M1. (a)	[Fe(H	$({}_{2}O)_{6}]^{2+} + 2$	$2NH_3 \rightarrow Fe(H_2O)_4(OH)_2 + 2NH_4^+$ Allow equation with OH ⁻ provided equation showing formation of OH ⁻ from NH ₃ given	1
		Green	precipitate	1
		[Fe(H ₂ C	$(D)_6]^{2+} + CO_3^{2-} \rightarrow FeCO_3 + 6H_2O_3$	1
		Green	precipitate effervescence incorrect so loses M4	1
	(b)	(i) C	Colourless / (pale) green changes to pink / purple (solution) Do not allow pale pink to purple	1
		J	ust after the end–point MnO_4^- is in excess / present	1
		(ii) M	$InO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$	1
		N	loles KMnO ₄ = 18.7 × 0.0205 / 1000 = (3.8335 × 10 ⁻⁴) Process mark	1
		N	loles Fe ²⁺ = 5 × 3.8335 × 10 ⁻⁴ = 1.91675 × 10 ^{-₃} Mark for M2 × 5	1
			loles Fe^{2+} in 250 cm ³ = 10 × 1.91675 × 10 ⁻³ = 0.0191675 moles in 50 m ³	-
			Process mark for moles of iron in titration (M3) × 10	1
		C	Driginal conc $Fe^{2+} = 0.0191675 \times 1000 / 50 = 0.383 \text{ mol dm}^{-3}$ Answer for moles of iron (M4) × 1000 / 50	
			Answer must be to at least 2 sig. figs. (0.38)	1 [11]

(b)	V ₂ O	$S_5 + SO_2 \rightarrow V_2O_4 + SO_3$ Equations can be in either order Allow multiples	1
	V ₂ O ₄	$_{4} + \frac{1}{2}O_{2} \rightarrow V_{2}O_{5}$	1
(c)	(i)	In a different phase / state <u>from reactants</u>	1
	(ii)	Impurities poison / deactivate the catalyst / block the active sites Allow (adsorbs onto catalyst AND reduces surface area)	1
(d)	(i)	The catalyst is a reaction product	1
	(ii)	Mn²+ / Mn³+ ion(s)	1
	(iii)	$4Mn^{2*} + MnO_4^- + 8H^+ \rightarrow 5Mn^{3*} + 4H_2O$ Equations can be in either order	1
		$2Mn^{_{3^{*}}} + C_2O_4^{_{2^{-}}} \rightarrow 2Mn^{_{2^{*}}} + 2CO_2$	1

1

[9]

1

	(It can act as an intermediate that) lowers the activation energy							
	Allow (alternative route with) lower E _a							
	CH₃	$CH_{3}CHO + 2Co^{3+} + H_{2}O \rightarrow CH_{3}COOH + 2Co^{2+} + 2H^{+}$ Allow multiples; allow molecular formulae Allow equations with $H_{3}O$ +						
			1					
	$\frac{1}{2}O_2 + 2Co^{2*} + 2H^* \rightarrow 2Co^{3*} + H_2O$							
(b)	(i)	$[Co(H_2O)_{\theta}]^{2*} + 3H_2NCH_2CH_2NH_2 \rightarrow [Co(H_2NCH_2CH_2NH_2)_3]^{2*} + 6H_2O$ Do not allow en in equation, allow $C_2H_{\theta}N_2$	1					
		The number of particles increases / changes from 4 to 7 Can score M2 and M3 even if equation incorrect or missing provided number of particles increases	1					
		So the entropy change is positive / disorder increases / entropy increases	1					
	(ii)	Minimum for M1 is 3 bidentate ligands bonded to Co Ignore all charges for M1 and M3 but penalise charges on any ligand in M2	1					
		Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand Minimum for M2 is one ligand identified as H₂NNH₂ <i>Allow linkage as −C−C− or just a line.</i>						
			1					

	Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt	1
(c)	Moles of cobalt = (50 × 0.203) / 1000 = <u>0.01015</u> mol Allow 0.0101 to 0.0102	1
	Moles of AgCl = 4.22/143.4 = 0.0294 <i>Allow 0.029</i> <i>If not AgCl (eg AgCl₂ or AgNO₃), lose this mark and can only</i> <i>score</i> M1, M4 <i>and</i> M5	1
	Ratio = Cl ⁻ to Co = 2.9 : 1 Do not allow 3 : 1 if this is the only answer but if 2.9:1 seen somewhere in answer credit this as M3	1
	$[Co(NH_3)_6]CI_3$ (square brackets not essential)	1
	Difference due to incomplete oxidation in the preparation Allow incomplete reaction. Allow formation [Co(NH ₃) ₅ Cl]Cl ₂ etc. Some chloride ions act as ligands / replace NH ₃ in complex. Do not allow 'impure sample' or reference to practical deficiencies	1 [15]

M4.(a) **Y**

(b) **X**

1

1

(c) Jump in trend of ionisation energies after removal of fifth electron Fits with an element with 5 outer electrons (4s²3d³) like V 1 Explanation: Two different colours of solution are observed (d) 1 Because each colour is due to vanadium in a different oxidation state 1 Stage 1: mole calculations in either order (e) Moles of vanadium = 50.0 × 0.800 / 1000 = 4.00 × 10⁻² Extended response Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 1 Moles of SO₂ = pV / RT = $(98\ 000 \times 506 \times 10^{-6})$ / (8.31×293) $= 2.04 \times 10^{-2}$ 1 Stage 2: moles of electrons added to NH₄VO₃ When SO_2 (sulfur(IV) oxide) acts as a reducing agent, it is oxidised to sulfate(VI) ions so this is a two electron change 1 Moles of electrons released when SO₂ is oxidised = $2.04 \times 10^{-2} \times 2$ $= 4.08 \times 10^{-2}$ 1

Stage 3: conclusion

But in NH_4VO_3 vanadium is in oxidation state 5

 4.00×10^{-2} mol vanadium has gained 4.08×10^{-2} mol of electrons therefore 1 mol vanadium has gained $4.08 \times 10^{-2} / 4.00 \times 10 - 2 = 1$ mol of electrons to the nearest integer, so new oxidation state is 5 - 1 = 4

[11]

1

1

1

1

1

1

1

[4]

M5.(a) Negative ions <u>repel</u> one another

 (b) Positive ions <u>attract</u> negative ions in catalysed process *Allow activation energy decreases. Allow alternative route with lower E_a Ignore references to heterogenous catalysis.*

(c) $S_2O_{6^{2-}} + 2e^{-} \longrightarrow 2SO_{4^{2-}}$ Allow multiples including fractions. Ignore state symbols.

(d)
$$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$$

Allow multiples including fractions.
Ignore state symbols.
Allow the correct equation involving I_3^-
 $S_2O_8^{2-} + 3I^- \longrightarrow 2SO_4^{2-} + I_3^-$

M6.(a) moles of $Cr_2O_7^{2-}$ per titration = 21.3 × 0.0150 / 1000 = 3.195×10^{-4}

Page 7

[7]